Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38426407

RESUMO

Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Assuntos
Antimaláricos , Malária , Nanomedicina , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Sistemas de Liberação de Medicamentos , Malária/tratamento farmacológico , Modelos Teóricos , Plasmodium
2.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518861

RESUMO

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Assuntos
Antimaláricos , Malária , Humanos , Proteínas de Choque Térmico/metabolismo , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Protozoários/metabolismo
3.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411062

RESUMO

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Criança , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Burkina Faso , Artemeter/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação de Medicamentos , Polimorfismo Genético/genética , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
4.
Bioinform Biol Insights ; 18: 11779322241230214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333003

RESUMO

6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In Plasmodium species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of Plasmodium falciparum (PfPTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of PfPTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, N,N-dimethyl-N'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.

5.
Int J Infect Dis ; 139: 41-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016502

RESUMO

OBJECTIVES: Partial artemisinin resistance, mediated by Plasmodium falciparum K13 (PfK13) mutations, has been confirmed in certain areas of East Africa that are historically associated with high-level antimalarial resistance. The Democratic Republic of Congo (DRC) borders these areas in the East. This study aimed to determine the prevalence of resistance markers in six National Malaria Control Program surveillance sites; Boende, Kabondo, Kapolowe, Kimpese, Mikalayi, and Rutshuru. METHODS: The single nucleotide polymorphisms (SNPs) in P. falciparum genes PfK13, Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt were assessed using targeted next-generation sequencing of isolates collected at enrollment in therapeutic efficacy studies. RESULTS: PfK13 SNPs were detected in two samples: in Kabondo (R561H) and in Rutshuru (P441L), both areas near Uganda and Rwanda. The Pfdhps ISGEGA haplotype, associated with reduced sulfadoxine-pyrimethamine chemoprevention efficacy, ranged from 0.8% in Mikalayi (central DRC) to 42.2% in Rutshuru (East DRC). CONCLUSIONS: R561H and P441L observed in eastern DRC are a concern, as they are associated with delayed artemisinin-based combination therapies-clearance and candidate marker of resistance, respectively. This is consistent with previous observations of shared drug resistance profiles in parasites of that region with bordering areas of Rwanda and Uganda. The likely circulation of parasites has important implications for the ongoing surveillance of partial artemisinin-resistant P. falciparum and for future efforts to mitigate its dispersal.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , República Democrática do Congo/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Uganda , Proteínas de Protozoários/genética
6.
Vet Parasitol ; 324: 110055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931475

RESUMO

BACKGROUND: Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS: Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS: Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 µM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 µM, artefenomel 2.56 ± 0.67 µM, chloroquine 2.14 ± 0.76 µM, primaquine 22.61 ± 6.72 µM, dihydroarthemisinine 4.65 ± 0.22 µM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 µM, and diminazine aceturate 0.42 ± 0.01 µM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION: Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.


Assuntos
Antimaláricos , Babesia , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Pirimetamina/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Concentração Inibidora 50 , Mamíferos , Doenças dos Bovinos/tratamento farmacológico
7.
Bio Protoc ; 13(21): e4863, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37969754

RESUMO

The mitochondrial electron transport chain (ETC) is a multi-component pathway that mediates the transfer of electrons from metabolic reactions that occur in the mitochondrion to molecular oxygen (O2). The ETC contributes to numerous cellular processes, including the generation of cellular ATP through oxidative phosphorylation, serving as an electron sink for metabolic pathways such as de novo pyrimidine biosynthesis and for maintaining mitochondrial membrane potential. Proper functioning of the mitochondrial ETC is necessary for the growth and survival of apicomplexan parasites including Plasmodium falciparum, a causative agent of malaria. The mitochondrial ETC of P. falciparum is an attractive target for antimalarial drugs, due to its essentiality and its differences from the mammalian ETC. To identify novel P. falciparum ETC inhibitors, we have established a real-time assay to assess ETC function, which we describe here. This approach measures the O2 consumption rate (OCR) of permeabilized P. falciparum parasites using a Seahorse XFe96 flux analyzer and can be used to screen compound libraries for the identification of ETC inhibitors and, in part, to determine the targets of those inhibitors. Key features • With this protocol, the effects of candidate inhibitors on mitochondrial O2 consumption in permeabilized asexual P. falciparum parasites can be tested in real time. • Through the sequential injection of inhibitors and substrates into the assay, the molecular targets of candidate inhibitors in the ETC can, in part, be determined. • The assay is applicable for both drug discovery approaches and enquiries into a fundamental aspect of parasite mitochondrial biology.

9.
Eur J Med Chem ; 258: 115550, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37336067

RESUMO

Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.


Assuntos
Doença de Chagas , Leishmaniose , Malária , Parasitos , Animais , Humanos , Aciltransferases , Doença de Chagas/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico
10.
Antimicrob Agents Chemother ; 67(7): e0173022, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338381

RESUMO

Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 µM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P < 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Combinação de Medicamentos , Resistência a Medicamentos
11.
J Mol Graph Model ; 122: 108497, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149980

RESUMO

Malaria is a life-threatening parasitic disease that affects millions of people worldwide, especially in developing countries. Despite advances in conventional therapies, drug resistance in malaria parasites has become a significant concern. Hence, there is a need for a new therapeutic approach. To combat the disease effectively means eliminating vectors and discovering potent treatments. The nanotechnology research efforts in nanomedicine show promise by exploring the potential use of nanomaterials that can surmount these limitations occurring with antimalarial drugs, which include multidrug resistance or lack of specificity when targeting parasites directly. Utilizing nanomaterials would possess unique advantages over conventional chemotherapy systems by increasing the efficacy levels while reducing side effects significantly by delivering medications precisely within the diseased area. It also provides cheap yet safe measures against Malaria infections worldwide-ultimately improving treatment efficiency holistically without reinventing new methods therapeutically. This review is an effort to provide an overview of the various stages of malaria parasites, pathogenesis, and conventional therapies, as well as the treatment gap existing with available formulations. It explores different types of nanocarriers, such as liposomes, ethosomal cataplasm, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocarriers, and metallic nanoparticles, which are frequently employed to boost the efficiency of antimalarial drugs to overcome the challenges and develop effective and safe therapies. The study also highlights the improved pharmacokinetics, enhanced drug bioavailability, and reduced toxicity associated with nanocarriers, making them a promising therapeutic approach for treating malaria.


Assuntos
Antimaláricos , Malária , Nanoestruturas , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Nanotecnologia , Nanomedicina , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico
12.
Chembiochem ; 24(12): e202300154, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158666

RESUMO

Cladosporin, a unique natural product from the fungus Cladosporium cladosporioides, exhibits nanomolar inhibitory activity against Plasmodium falciparum by targeting its cytosolic lysyl-tRNA synthetase (PfKRS) to inhibit protein biosynthesis. Due to its exquisite selectivity towards pathogenic parasites, cladosporin has become a very promising lead compound for developing antiparasitic drugs to treat drug-resistant malaria and cryptosporidiosis infections. Here we review the recent research progress of cladosporin covering aspects of the chemical synthesis, biosynthesis, bioactivity, cellular target and structure-activity relationship.


Assuntos
Antimaláricos , Lisina-tRNA Ligase , Malária Falciparum , Malária , Humanos , Isocumarinas/metabolismo , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/metabolismo , Malária Falciparum/tratamento farmacológico
13.
Pharmgenomics Pers Med ; 16: 449-461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223718

RESUMO

Background: Sub-Saharan Africa (SSA) population is genetically diverse and heterogenous thus variability in drug response among individuals is predicted to be high. Cytochrome P450 (CYP450) polymorphisms is a major source of variability in drug response. This systematic review presents the influence of CYP450 single nucleotide polymorphisms (SNPs), particularly CYP3A4*1B, CYP2B6*6 and CYP3A5*3 on antimalarial drug plasma concentrations, efficacy and safety in SSA populations. Methods: Searching for relevant studies was done through Google Scholar, Cochrane Central Register of controlled trials (CENTRAL), PubMed, Medline, LILACS, and EMBASE online data bases. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. Two independent reviewers extracted data from the studies. Results: Thirteen studies reporting the influence of CYP450 SNPs on plasma concentrations, efficacy and safety were included in the final data synthesis. CYP3A4*1B, CYP3A5*5, CYP2B6*6 and CYP2C8*2 did not affect antimalarial drug plasma concentration significantly. There was no difference in treatment outcomes between malaria patients with variant alleles and those with wild type alleles. Conclusion: This review reports lack of influence of CYP3A4*1B, CYP3A5*3, CYP2C8*3 and CYP2B6*6 SNPs on PK profiles, efficacy and safety in SSA among P. falciparum malaria patients.

14.
Curr Top Med Chem ; 23(16): 1477-1488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073152

RESUMO

Malaria has created havoc since time immemorial. It has actually become a major health concern due to its high prevalence in developing countries where poor sanitary conditions facilitate the seasonal breeding of the vector, the female Anopheles mosquito. Even after tremendous advancements in pest control and pharmacology science, managing this disease has not been successful, and the cure for this deadly infection has not proven effective lately. The various conventional drugs used are chloroquine, primaquine, mefloquine, atovaquone, quinine, artemisinin etc. All of these have one or other major disadvantages like multi-drug resistance, high dose requirements, aggravated toxicity, non-specificity of conventional drugs, and the emergence of drug-resistant parasites. Therefore, it is necessary to surpass these limitations and look for an alternative to curb the spread of this disease using an emerging technology platform. Nanomedicine is showing promise as an effective alternative tool for the management of malaria. The idea of this tool resonates well with David J. Triggle's outstanding suggestion "The chemist is as the astronaut, searching for biologically useful space in the chemical universe. This review presents a detailed discussion on various nanocarriers, their mode of action and future perspective in treating malaria. Nanotechnology-based drug delivery methods are highly specific, require a lower dose, offer more bioavailability with prolonged drug release and stay in the body longer. Recent nano drug encapsulation and delivery vehicles comprise nanocarriers like liposomes, and organic and inorganic nanoparticles, emerging as promising alternatives for malaria management.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Feminino , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Nanomedicina , Malária/parasitologia , Primaquina/uso terapêutico , Antiparasitários
15.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986890

RESUMO

Block copolymer micelles (BCMs) can be used to improve the solubility of lipophilic drugs and increase their circulation half-life. Hence, BCMs assembled from MePEG-b-PCL were evaluated as drug delivery systems of gold(III) bis(dithiolene) complexes (herein AuS and AuSe) to be employed as antiplasmodial drugs. These complexes exhibited remarkable antiplasmodial activity against liver stages of the Plasmodiumberghei parasite, and low toxicity in a model of zebrafish embryos. To improve the complexes' solubility, BCMs were loaded with AuS, AuSe, and the reference drug primaquine (PQ). PQ-BCMs (Dh = 50.9 ± 2.8 nm), AuSe-BCMs (Dh = 87.1 ± 9.7 nm), and AuS-BCMs (Dh = 72.8 ± 3.1 nm) were obtained with a loading efficiency of 82.5%, 55.5%, and 77.4%, respectively. HPLC analysis and UV-Vis spectrophotometry showed that the compounds did not suffer degradation after encapsulation in BCMs. In vitro release studies suggest that AuS/AuSe-BCMs present a more controlled release compared with PQ-loaded BCMs. The antiplasmodial hepatic activity of the drugs was assessed in vitro and results indicate that both complexes present higher inhibitory activity than PQ, although encapsulated AuS and AuSe presented lower activity than their non-encapsulated counterparts. Nevertheless, these results suggest that the use of BCMs as delivery vehicles for lipophilic metallodrugs, particularly AuS and AuSe, could enable the controlled release of complexes and improve their biocompatibility, constituting a promising alternative to conventional antimalarial treatments.

16.
J Fr Ophtalmol ; 46(4): 356-362, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36759246

RESUMO

INTRODUCTION: Toxic retinopathy due to antimalarial drugs is characterized by structural anomalies associated with severe, irreversible visual loss. The advantage of ophthalmologic monitoring is to detect these anomalies at an asymptomatic, preclinical stage, so that the recommended dose can be adjusted before the ophthalmologic manifestations appear. MATERIAL AND METHODS: Cross-sectional study carried out in the ophthalmology department of Habib Bourguiba University Hospital, Sfax, between August 2016 and February 2018. All patients treated in the internal medicine department of Hedi Chaker University Hospital with synthetic antimalarial drugs for at least 1 year were included. A complete ophthalmologic examination and specialized retinal testing (fundus autofluorescence, 10-2 automated visual field and swept source OCT) were performed for all patients. RESULTS: Fifty-six patients treated with antimalarial drugs were analyzed. The main indication was systemic lupus erythematosus (80.3%). Fifty-three patients (94.64%) were treated with hydroxychloroquine, and 3 patients (5.4%) with chloroquine. Thirteen patients (23.2%) exhibited signs of retinal toxicity, with fundus autofluorescence alterations in 8% of cases, fundus anomalies in 12.5% of cases, 10-2 automated visual field defects in 16% of cases, and SS-OCT alterations in 23.2% of cases. We did not find a statistically significant association between retinal toxicity, weight, age, sex and renal insufficiency (p values of 0.8, 0.6, 0.66 and 0.7 respectively). Furthermore, the association between the cumulative dose and retinal toxicity was statistically significant (p=0.02). The prevalence of toxic retinopathy was identified as 5% at 5 years, 25% at 10 years and 70% at 20 years. CONCLUSIONS: A better understanding of the risk factors for retinal toxicity is necessary when prescribing synthetic antimalarial drugs. Screening should be systematic. It should be based on a combination of functional and anatomic tests. The frequency of screening depends on the associated risk factors.


Assuntos
Antimaláricos , Doenças Retinianas , Humanos , Antimaláricos/efeitos adversos , Tunísia/epidemiologia , Estudos Transversais , Tomografia de Coerência Óptica , Hidroxicloroquina/efeitos adversos , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/diagnóstico , Doenças Retinianas/epidemiologia , Transtornos da Visão/diagnóstico
17.
Medicina (Kaunas) ; 59(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36837460

RESUMO

Introduction: Malaria is still a huge social and economic health problem in the world. It especially affects the developing countries of Africa. A particular problem is the misuse and abuse of over-the-counter antimalarials. This problem could lead to the emergence of drug-resistant strains and the subsequent elimination of more antimalarials from the list of effective antimalarials in Ghana. Methods: During the implementation of the study, an original questionnaire was used to collect data among Ghanaians on their knowledge of malaria, attitude towards antimalarials and their use of antimalarials. Results: The proportion in the analyzed subgroups was compared using the chi-square test. The analysis was conducted using TIBCO Software Inc., Krakow, Poland (2017) and Statistica (data analysis software system), version 13. In total, 86.29% of respondents knew the symptoms of malaria (p = 0.02) and 57.2% knew the cause of malaria (p < 0.001). Respondents with higher education were significantly more likely to know the symptoms of malaria (96%) p < 0.001. In the study group, only 74.59% of the respondents consulted medical personnel before taking the antimalarial drug (p = 0.51) and only 14.2% of the remaining respondents performed a rapid diagnostic test for malaria. Conclusions: The awareness of Accra and Yendi native inhabitants about the causes and symptoms of malaria and alternative ways of prevention is quite high. People's education very significantly influences the way Accra residents deal with suspected malaria. Widespread public education and awareness and accessibility to places where antimalarial drugs are sold play a very important role in the proper use of antimalarial drugs.


Assuntos
Antimaláricos , Malária , Transtornos Relacionados ao Uso de Substâncias , Humanos , Antimaláricos/uso terapêutico , Gana , Malária/tratamento farmacológico , Inquéritos e Questionários
18.
Mini Rev Med Chem ; 23(21): 2073-2088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843374

RESUMO

Malaria is a public health problem that causes thousands of deaths, primarily in children in African regions. Artemisinin-based combination therapies (ACTs) have helped to save thousands of lives; however, due to Plasmodium's resistance to available treatments, there is a need to search for new low-cost drugs that act through different mechanisms of action to contain this disease. This review shows that compounds with sulfonamide moiety, possibly, act as inhibitors of P. falciparum carbonic anhydrases, moreover, when linked to a variety of heterocycles potentiate the activities of these compounds and may be used in the design of new antimalarial drugs.

19.
Acta Pharm ; 73(1): 1-27, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692468

RESUMO

Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico
20.
Chem Biol Drug Des ; 101(4): 809-818, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36453012

RESUMO

The development of inhibitors that target the papain-like protease (PLpro) has the potential to counteract the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent causing coronavirus disease 2019 (COVID-19). Based on a consideration of its several downstream effects, interfering with PLpro would both revert immune suppression exerted by the virus and inhibit viral replication. By following a repurposing strategy, the current study evaluates the potential of antimalarial drugs as PLpro inhibitors, and thereby the possibility of their use for treatment of SARS-CoV-2 infection. Computational tools were employed for structural analysis, molecular docking, and molecular dynamics simulations to screen antimalarial drugs against PLpro, and in silico data were validated by in vitro experiments. Virtual screening highlighted amodiaquine and methylene blue as the best candidates, and these findings were complemented by the in vitro results that indicated amodiaquine as a µM PLpro deubiquitinase inhibitor. The results of this study demonstrate that the computational workflow adopted here can correctly identify active compounds. Thus, the highlighted antimalarial drugs represent a starting point for the development of new PLpro inhibitors through structural optimization.


Assuntos
Antimaláricos , COVID-19 , Humanos , SARS-CoV-2 , Papaína/química , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Amodiaquina , Reposicionamento de Medicamentos , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...